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中  文  摘  要

	数学，自从诞生的那一刻开始，就和其它学科紧密结合，共同发展，硕果累累。特别是近些年来，随机过程，作为一种在二十世纪发展起来的数学理论，越来越深入的渗透到了诸如物理、化学、生物甚至经济学的领域，具有越来越重要的应用前景。当然，通过这种应用，随机过程理论本身也可以找到新的增长点，出现新的有意义的问题和崭新的思维。
本文一方面是把随机过程模型应用到近代非平衡态统计物理中，从定义到性质给出了一套相对完整的数学理论；另一方面是把随机过程模型应用到系统生物学中，详细总结了生物化学系统的随机建模方法，并深入探讨了酵母细胞环布尔网络模型、单分子酶动力学模型以及磷酸化去磷酸化生物开关模型的性质。
随机过程理论与统计物理理论的结合可以追述到1905年爱因斯坦基于平衡态热力学理论推导出布朗运动数学模型的时候，但是，有关随机过程的非平衡态热力学统计物理性质的研究却是近三十年左右才真正开始的事情。非平衡态统计物理中的熵产生概念是用来描述该非平衡定态距离平衡态远近的物理量，这和非平衡态统计物理中另一个宏观可逆性的概念相联系。一个宏观不可逆的定态系统必须具有正的熵产生，且非平衡。Nicolis和Prigogine把非平衡系统看作是一个具有正熵产生率的平稳开系统，它和周围的环境交换着物质和能量。Prigogine因为此项著名的工作获得了1977年诺贝尔化学奖。我们可以利用时齐马氏链和扩散过程为基础对非平衡定态和环流建立一个严格的数学模型。非平衡定态的数学理论已经被钱敏等研究了将近三十年。
与此同时，物理中的布朗马达现象(也被称作棘轮系统)也得到了物理学家和生物化学家的广泛关注。该现象描述的是在一个具有适当非对称性的系统中，噪声可以引起定向的净粒子流。物理学家习惯于应用非时齐的随机过程来描述这一现象，同样的这一类模型也出现在随机共振的模型中，即描述在一个非线性系统中很弱的周期信号可以被噪声放大的现象。在布朗马达和随机共振的现象中，噪声起到了建设性的作用，但是其模型的非时齐性会在其解的严格数学分析中引起很多困难。
以非时齐随机过程为模型来刻画定态附近的涨落以及两个定态之间的转移过程是近些年才开始的事情，对于它的研究还处于初级阶段，有着大量的工作需要做，特别是平衡态热力学及统计物理中有关热力学第一、二定律的表述应该如何推广过来仍然处于一个很朦胧的阶段。在这方面我们做了一系列的研究。
我们把前人关于时齐随机过程的非平衡态统计物理工作中的概念和结论推广到非时齐马氏链的情形，并引入了瞬时可逆性和瞬时熵产生率的概念，而且讨论了这二者之间的关系。同时，生灭链或扩散过程的旋转数对应于布朗马达模型中的平均粒子流，我们发现当该生灭马氏链瞬时可逆或周期可逆时，它的旋转数都等于零。因此，在我们的马氏链模型下，布朗马达中的定向粒子流只能在非平衡，也就是不可逆的系统中出现。更进一步，我们还给出了瞬时熵产生率的测度论定义。
上世纪九十年代以来，对于远离平衡态的系统，一些描述其统计动力学性质的重要等式被相继发现和研究，这被称为统计物理学最新的重要进展。其中包含Jarzynski所发现的著名的非平衡功关系式，根据该等式就可以利用非平衡物理过程中测量的功来计算两个平衡态之间的Helmholz自由能的差，并且已经在单个DNA分子的实验上得到了证实和应用。其后Hatano和Sasa成功地把Jarzynski等式推广到非平衡定态的情形，这和生物体内的马达蛋白机制更为相关。由于Jarzynski和Hatano-Sasa等式描述的是从一个平衡态过渡到另一个平衡态，或者从一个非平衡定态过渡到另一个非平衡定态的过程，所以就不可能再用平稳时齐的随机过程来作为数学模型了，而必须用非时齐的随机过程来刻画。
物理学家是从传统的统计物理角度，利用Hamilton系统的性质推导证明的，其数学理论这十几年来一直还没有人真正来做过。所以，我们以非时齐马氏链和非时齐扩散过程为模型，定义并证明了其中的推广Jarzynski等式，并且还通过把该结论应用到物理学家和化学家的工作上，阐明了它的物理意义，其中包括Jarzynski和Crooks的开创性工作，Hummer和Szabo的工作，Hatano-Sasa等式以及钱纮关于化学计量学系统中Gibbs自由能差的工作。
和Jarzynski等式，Hatano-Sasa等式相似，涨落定理(FT)也是最近发展起来的一类远离平衡态系统所满足的重要关系式，其关注的是系统轨道满足和不满足热力学第二定律的概率之比。自从涨落定理在1993年被发现之后，该理论的广泛适用性就一直是一个很有意义的研究课题。我们在论文中关注的是一般随机过程的Evans-Searles型暂态涨落定理，严格证明了样本熵产生的暂态涨落定理对于非常一般的随机过程都成立，并不需要马氏性、平稳性以及时齐性的条件，从而很好地确信了该理论的广泛适用性；然后对于很多随机过程模型检验了该定理的条件，包括时齐，非时齐马氏链和一般的平稳扩散过程。其中，关于非时齐马氏链和一般扩散过程样本熵产生的暂态涨落定理都是新的结论，之前还没有被讨论过。在这之前的很多工作要么就是数学上不够严格，要么就是需要一些附加的条件。
近些年来，由于人类基因组计划的成功实施和众多模式生物材料如果蝇等100余种生物全基因组序列相继被测定，以及随之而来的各种“组学”的推动，系统生物学迅速崛起，成为21世纪初生命科学领域的大事件。但是，生物学家传统上习惯于使用确定性的非线性动力系统来作为生物系统的数学模型，其中包含调控机制和动力学参数。对于生物化学的反应网络，这些模型都是以质量作用定律为基础的；而对于小的生物化学系统，比如单个细胞，那么就需要建立以化学主方程为基础的随机模型，其中以化学反应常数、化学计量学系数、分子数目等作为参数。这样的随机模型已经得到了广泛的应用，它给予了随机性以定量的描述，并且为传统的生物化学带来了崭新的思维。
    在论文中，我们简要介绍了生物系统建模的一般方法，包括以质量作用定理为基础的确定性模型，化学主方程及其扩散近似。接下来以非平衡定态的数学理论为基础，我们给出了一类生物化学系统的简单亚宏观描述及其非平衡态热力学分析。最后我们将简要叙述一下该亚宏观描述的应用，包括Hill, T. L. 最初关于肌肉收缩的模型，酶动力学的随机米氏方程和Na+/葡萄糖协同输运子模型。
在生物体内的噪声越来越得到重视和研究的时候，如何定量的描述随机模型中的同步化行为就变得越来越重要。因为极限环以及固定相位差的概念在随机模型中将不再成立，取而代之，物理学家和生物学家经常不得不用轨道功率谱中的明显峰值的出现，或者直接观察其随机轨道来描述同步化行为，但是这样很容易在做出结论的时候引起含混和误解。因此，需要研究随机模型中对应于确定性模型极限环概念的合理推广；而实际上，由于非平衡定态数学理论中的“环流”是可以定义成沿着每条轨道，每个环产生的平均频率，所以它正好可以被自然地看作在不同的吸引域中，随机同步化行为强度的定量刻画。
    另一方面，细胞环是一个非常重要的生命过程，其内在的分子网络已经被广泛的研究。2004年，欧阳颀等把神经网络模型中著名的Hopfield模型应用于由11个节点组成的酵母细胞环有丝分裂调控网络，发现该网络的拓扑结构和动力学都非常稳健，其不动点对应于细胞环的G1态，其全局吸引的轨道对应于细胞环经扰动后回到G1态的生物学路径；然后，确定性的布尔网络模型被进一步推广到随机布尔网络, 发现在很宽的噪声范围内，细胞环的G1态和生物学路径被很好的保持。收到启发之后，我们就把环流理论应用于酵母细胞环布尔网络模型中，得到其同步化行为的完整刻画，并且比较了环流理论和功率谱方法的联系。
    上世纪九十年代中期以来，由于单分子实验技术的快速发展，在实验中追踪单个的分子已经成为可能。但是在为单分子酶动力学建模的时候，确定性模型已经完全失效了，因为在实验中能清楚地观测到噪声的干扰，也就是随机性此时占据了主导地位。所以单分子酶动力学就应该建立在随机过程的基础上来解释和分析实验现象，以及它和经典酶动力学的关系。
谢晓亮等在实验中发现单分子酶动力学的等待时间的均值恰好等于经典酶动力学中的Michaelis-Menten流量的倒数。在论文中，我们详细讨论了三状态可逆Michaelis-Menten酶动力学模型，定义了环流、环等待时间和步进概率等概念并详细探讨它们之间的相互关系。然后，我们利用一种倒逆轨道的技巧严格证明了推广Haldane等式，并将所有结论推广到n状态的情形，同时详细对比了前人在理论和实验方面的诸多工作。
生物信号传输过程是生物体内非常重要的生命活动之一，特别是在生物中心法则，即DNA复制，RNA转录及蛋白质合成过程中发挥着核心的作用。蛋白质磷酸化和去磷酸化过程是其中非常重要的一类生化反应，并有多种酶参与其中；蛋白质的生物活性经常是被磷酸化过程所激活，而被去磷酸化过程所关闭。所以这样的ATP-ADP环(PdPC)过程就是在传输着生物信号，被称为控制着信息流的“生物开关”。生物开关中一个非常重要的指标就是所谓的“灵敏度”，即某项物质(特别是激酶)的浓度变化而引起的底物蛋白的活性变化的大小程度。
    在此基础上，我们研究了时间合作现象的基本概念和理论，然后把它应用到磷酸化和去磷酸化环的简单开关以及超灵敏度开关上；我们的想法是把PdPC中出现的合作现象通过其完整的化学主方程求出一个近似模型，通过能量参数和前人的工作相衔接。最后，我们通过分析若干个经典结构合作模型，得到了时间合作现象和结构合作现象数学上的等同性，这也正是我们称这种现象为“时间合作”的原因。磷酸化去磷酸化机制和结构合作现象之间的联系和区别，这是由1992年Nobel奖得主Fischer和Krebs在上世纪五十年代发现了生物体内的蛋白激酶之后所提出的重要问题，我们这里从数学和物理的角度给出了一些解释和分析。
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Applications of stochastic processes into nonequilibrium statistical physics and systems biology
Ge Hao
ABSTRACT

	Mathematics always develops together with other sciences, and recently stochastic processes, as a new model emerged in the 20th century, becomes more and more popular in physics, chemistry and even biology. Of course, through these applications, it would also catch more and more significant new ideas to develop itself.
In the present thesis, we apply stochastic processes to modern nonequilibrium statistical physics, for which we construct a completely mathematical theory including both definitions and properties; on the other hand, we also apply stochastic processes to systems biology, summarizing the stochastic modelling methods of biochemical systems and investigating the Boolean network model of yeast cell-cycle, the single-molecule enzyme kinetics and the phosphorylation-dephosphorylation biological switches.
The relation between stochastic process and statistical physics could date back to A. Einstein, who put forward the mathematical presentation of Brownian motion based on equilibrium statistical physics in 1905. However, the nonequilibrium statistical physics properties of stochastic processes have only been carefully studied for about thirty years. The concept of entropy production was first put forward in nonequilibrium statistical physics to describe how far a specific state of a system is from its equilibrium state. It is closely related to another concept of macroscopic irreversibility in nonequilibrium statistical physics. A macroscopic irreversible system in a steady state should have positive entropy production rate and should be in nonequilibrium. Nicolis and Prigogine regarded nonequilibrium systems as a stationary open system with positive entropy production, which exchanges matter and energy with surroundings. Prigogine was awarded Nobel Prize of Chemistry in 1977 due to this fundamental contribution to nonequilibrium thermodynamics. At almost the same time, T.L. Hill, etc. constructed a general mesoscopic model for the combination and transformation of biochemical polymers in vivid metabolic systems since 1966, which can be applied to explain the mechanism of muscle contraction and active transports, such as the Na and K ions actively transferring and penetrating through organic membranes in the Hodgkin-Huxley model. One could apply stationary Markov chains and diffusion processes to build a rigorous model for nonequilibrium steady states and cycle fluxes, which has been developed by Min Qian, et al. in the past thirty years. They derived the formulae for entropy production rate and circulation distribution of homogeneous Markov chains, Q-processes and diffusions. They concluded that the chain or process is reversible if and only if its entropy production rate vanishes, or iff there is no net cycle fluxes.
Meanwhile, the phenomenon of Brownian motors (sometimes called ratchet systems) has attracted much interest from physicists and biochemists. A net current of particles can be driven by noise, providing that there is an appropriate asymmetry in the system. Physicists used to describe this phenomenon with inhomogeneous stochastic processes, and such models also appear in the phenomenon of stochastic resonance, in which a weak periodic signal in a nonlinear system can be amplified by added noise. Noise plays a creative role in the phenomena of both Brownian motor and stochastic resonance. However, the time inhomogeneity causes many difficulties in studying mathematically the property of its solution process.
The fluctuations around steady states and the transitions between steady states have just begun to be described by inhomogeneous stochastic processes very recently, hence there are so many properties unknown, especially how to extend the first and second law of thermodynamics to this case. We have done several works in this field.
We extend the notions and results of previous works to the situation of a general inhomogeneous Markov chain, then introduce the concepts of instantaneous reversibility and instantaneous entropy production rate and investigate their relationship. In particular, for a time-periodic birth-death chain, which can be regarded as a simple version of physical model(Brownian motors), we prove that its rotation number is zero when it is instantaneously reversible or periodically reversible. Hence, in our model of Markov chains, the directed transport phenomenon of Brownian motors can occur only in nonequilibrium and irreversible systems. In addition, we also give the measure-theoretical definition of the instantaneous entropy production rate of inhomogeneous Markov chains.
Since 1990s, a few relations that describe the statistical dynamics of driven systems have been discovered which are valid even if the system is driven far from equilibrium. These include the nonequilibrium work relations of Jarzynski and Crooks which give equilibrium Helmholtz free energy differences in terms of nonequilibrium measurements of the work required to switch from one ensemble to another. This result has been applied to the mechanical extension of single RNA molecules in the laboratory. After that, Hatano and Sasa have generalized Jarzynski’s work to the NESS, which is more relevant to motor proteins.
However, few rigorous mathematical results are derived since the emergence of Jarzynski’s equality. Applying the Feynman-Kac formula, G. Hummer and A. Szabo gave a quite brief proof of Jarzynski’s equality for inhomogeneous diffusive dynamics on a potential, and after that, Hong Qian investigated a simple two-state example of inhomogeneous Markov chains. But in fact, their proofs are not mathematically rigorous, and they all misused the Feynman-Kac formula of the inhomogeneous case, since it is quite different from the Feynman-Kac formula of the homogeneous case and the former is actually more difficult to apply than the latter one. On the other hand, the Jarzynski’s equality is trivial in the homogeneous case, which actually implies that inhomogeneity is a necessity for Jarzynski’s equality to make sense.
Its time inhomogeneity causes many difficulties in studying mathematically the physical property of stochastic processes. Finally, we could define and prove the generalized Jarzynski's equalities of inhomogeneous Markov chains and multidimensional diffusions. Further, we explain its physical meaning and applications through several previous work including Jarzynski and Crooks' original work, Hummer and Szabo's work, Hatano-Sasa equality and the Gibbs free energy differences in stoichiometric chemical systems.
Besides Jarzynski and Hatano-Sasa’s equalities, the fluctuation theorem (FT) is another class of important relations that are valid far from equilibrium, which gives a general formula valid in nonequilibrium systems, for the logarithm of the probability ratio of observing trajectories that satisfy or ‘violate’ the second law of thermodynamics. Since the emergence of fluctuation theorems in 1993, their degree of universality is an interesting subject of investigation. It is therefore useful to have rigorous derivations for as much physical situations as possible in order to rule out the existence of counterexamples in particular physical systems. In this thesis, we focus on the derivation of Evans-Searles fluctuation theorem for general stochastic processes, and rigorously prove that the transient fluctuation theorem (TFT) of sample entropy production holds for general stochastic processes without the assumption of Markovian, homogeneous, or stationary properties, confirming the validity of its universality. Then we verify the condition of our main result for various stochastic processes, including homogeneous, inhomogeneous Markov chains and general diffusion processes. Among these cases, the applications to inhomogeneous case, discrete time case and general diffusion processes are all new, which have not ever been pointed out before.

Recently, the field now commonly referred to as systems biology has developed rapidly. With the sequencing of whole genomes and the development of analysis methods to measure many of the cellular components, we have now entered the realm of complete descriptions at a cellular level. It is believed that systems biology will become one of the most active fields of science in the 21st century. But biologists used to apply deterministic nonlinear mathematical models, based on the Law of Mass Action, for biochemical reaction networks. Furthermore, noises are unavoidable in small biochemical reaction systems such as those inside a single cell. Stochastic models with chemical master equations (CME) based on biochemical reaction stoichiometry, molecular numbers, and kinetic rate constants should be developed. It has already provided important insights and quantitative characterizations in some cases of the biochemical system.
A brief review of stochastic modelling of biological systems is given in the thesis, including the deterministic model with the law of mass action, chemical master equation and its diffusion approximation. Equipped with the mathematical theory of nonequilibrium steady states, we investigate an explicit mesoscopic description and nonequilibrium thermodynamics of biological systems. By investigating the circulation theory of cycles in the mesoscopic model, a framework clarifying the main biological circuits for theoretical analysis is discussed, which is then applied to muscle contraction, stochastic Michaelis-Menten kinetics and Na+/glucose cotransporter.
    As there is a growing awareness and interest in studying the effects of noise in biological networks, it becomes more and more important to quantitatively characterize the synchronized dynamics mathematically in stochastic models, because the concepts of limit cycle and fixed phase difference no longer holds in this case. Instead, physicists and biologists always have to characterize synchronized dynamics by the distinct peak of its power spectrum or just only by observing the stochastic trajectories, which however may cause ambiguities in the conclusion. Therefore, a logical generalization of limit cycle in stochastic models needs to be developed, and interestingly, the concept of circulation in the mathematical theory of nonequilibrium steady states actually plays the role. Actually, since the stochastic circulation in NESS is defined as the time-averaged frequency of each cycle in the sense of trajectory, it can also be regarded as a quantitative characterization for the intensities of stochastic synchronized dynamics in different attractor basins.
On the other hand, cell cycle is one of important biological processes whose underlying molecular networks have been extensively studied. Recently, Li, et al. have developed a discrete deterministic Boolean model by applying the approach of Hopfield for neural networks to the yeast cell-cycle regulatory network with 11 nodes. They have found that the topology of the network provides significant robustness of the dynamics toward the check points, i.e., steady states. The deterministic Boolean model has been further extended to incorporate stochastic dynamics. Several biologically interesting results have been obtained; these include the numerical evidence for the existence of a single dominant cell cycle and its robustness under a large range of noise level. We apply the circulation theory to investigate the synchronized stochastic dynamics of this model and provide a clear picture of the synchronized dynamics. Furthermore, we compare this circulation theory with the power spectrum method always used by physicists.
Recent advances in single-molecule spectroscopy and manipulation have now made it possible to study enzyme kinetics at the level of single molecules, where the stochastic effects, termed as “dynamic disorder’’, are significant. Experimentalists not only can directly measure the distributions of molecular properties through single-molecule experiments rather than the ensemble average but also can apply the theory of stochastic processes to analyze the statistical properties of the stochastic trajectory.

Xie et al. observed that the mean waiting time is the same as the reciprocal of the Michaelis-Menten steady-state flux. But the model they built in their theoretical analysis is the simplest irreversible Michaelis-Menten mechanism, and the state space of their stochastic model (Markov chain) actually only contains two states (E and ES), which does not distinguish the two different pathways from ES to E and is always in mathematical detailed balance rather than chemical detailed balance. We thoroughly investigate a more realistic reversible three-step mechanism of the Michaelis-Menten kinetics in detail, defining cycle fluxes, cycle waiting times and stepping probabilities. Then, we also prove the generalized Haldane equality and extend all the results to the n-step cycle. Finally, experimental and theoretically based evidences are also included . 
It is often thought that the noise added to the biological models only provides moderate refinements to the behaviors otherwise predicted by the classical deterministic system description, while it is quite obvious that the main problems discussed in the thesis are impossible even to be put forward in a deterministic model. So it may be necessary to reconstruct the main biological theory based on the stochastic models in order to explain the experiment results of single molecule tracking.
Protein phosphorylation is one class of the most important biochemical reactions in signal transduction system of living cells. The biological activity of a protein is often ``turned on'' by the phosphorylation, and ``turned off'' by a dephosphorylation reaction. The turning on and off of the biological activity of a protein has been widely recognized as a switch in controlling information flow. One of the key concepts in phosphorylationdephosphorylation cycle signaling is the switching sensitivity: the sharpness of the activation of the substrate protein in response to the concentration of the kinase. In the early 1980s, Goldbeter and Koshland6 discovered the ultrasensitivity phenomenon of a PdPC switch in terms of the zeroth order kinetics of kinase and phosphatase, where the Hill coefficient can be extremely high. Moreover, it has already been observed in experiments.
In this thesis, we investigate the basic concepts and theories of temporal cooperativity phenomenon, and apply them to the simple and ultrasensitive phosphorylation-dephosphorylation switches; our aim is to connect the phosphorylation-dephosphorylation cooperativity phenomenon to the previous works through the energy parameter in the simple model reduced from the complete stochastic model based on chemical master equations.
Although the sharp activation in PdPC switches have always been compared to allosteric cooperative transitions, it has never been made very clear what the essential similarities and differences between them are. This significant question could date back to Fischer and Krebs, who discovered protein phosphorylation as a regulatory mechanism for enzyme activity and won the Nobel Prize in 1992. We now try to answer it from the perspective of mathematics and physics. Our quantitative analysis provided a clear mechanistic origin for the high cooperativity in the zero-order ultrasensitivity. The mechanism of temporal cooperativity is parallel in mathematical form to, but fundamentally different in biochemical nature from, the allosteric cooperativity of multisubunit protein systems where the dissociation constants play the key role. That is just why we call this phenomenon as “temporal cooperativity”. Nevertheless, the degree of allosteric cooperativity is restricted by the total number of sites in a single enzyme molecule which cannot be freely regulated, while temporal cooperativity is only restricted by the total molecule number of the target protein which can be regulated in a wide range and gives rise to the ultrasensitivity phenomenon. That is just why the organisms find it advantageous to develop the mechanism of covalent modification via phosphorylation and ATP hydrolysis to control the biological activity of proteins rather than the mechanism of allosteric transitions. The concept of temporal cooperativity in terms of the random-walk model is not limited to PdPC and kinetically isomorphic GTPases, but also applies to many other signaling processes.
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